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importance.

This paper presents formulas of modal density of nonshallow spherical
homogeneous and sandwich shells according to classical bending theory, and in
viscoelastic medium. The influences of transverse, longitudinal, and rotary
inertia terms and transverse shear deformation on modal density are examined
numerically. Numerical results show that, for some values of certain parame-
ters, radius-thiclmess ratio and transverse shear rigidity are of considerable

INTRODUCTION

Solutions for response of shells subjected to
external excitation can be derived easily on the basis
of modal analysis theoretically, but numerical calcu-
lation of these solutions, especially to high frequency
excitation, may become extremely laborious. New
meiiiods are nocded to simplify calenlations.

Some information is available on the concept
~of modal density of structural elements (1, 2], which
is defined as the number of modes (i.e., the number
of natural frequencies) within a wnit frequency band;
this concept is useful for the calculation of the re-
sponse of a structure to high frequency excitation [3].

Detailed calculations of modal densities for
shallow structural elements have been made by
Bolotin [2], Wilkinson [4], and Erickson [5] during
the past few years, but not for nonshallow elements.
Still, for the estimation of the response level of a
nonshailow spherical shell in which the assumptions
used in shallow structural elements are not appli-
cable, modal density may become an important physi-~
cal parameter to broadband acoustic excitation.

The primary purpose of the present paper is
to obtain the modal densities of nonshallow spherical
shells. Another purpose is to investigate the influ-
ence of rotary, Jongitudinal inertia terms and traus-
verse shear deformation on medal densities in the
vibration in the high frequency range.

Medal density of a closed isotropic homogene-
ous spherical shell is derived first according to
classical bending theory; modal density of an open

sphere and a shallow cap is then examined in relation
to that of the closed sphere. Also, the modal density
of an isotropic sandwich sphere is shown. In each
case modal densities are presented for a nondamping
state and for a linear viscous damping state. Numer-
ical results for homogeneous and sandwich closed
shells are presented in graphic form and the character
of modal density is examined.

SYMBOLS
a = radius of spherical shell (Fig. 1)
d = parameter of transverse shear rigidity
of isotropic homogeneous shell,
d = 1/Dx
ds = parameter of transverse shear rigidity
of isotropic sandwich core,
= D
ds 1/D Q%
D = bending rigidity, Eh®/12(1 - v?)
D = transverse shear deformation rigidity
of isotropic homogeneous element,

5/6Gh = 5/6[Eh/2(1 + V)]

D_ = transverse shear deformation rigidity
of isotropic sandwich core

E, Es = Young's modulus

g = acceleration of gravity
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P (cos ¢)

Q_(cos ¢)

BuwB

t

(o)

shell thickness for homogeneous shell

or distance between surface sheets for

sandwich (Fig. 1)

12a%/h®

4a%/h?

weight of shell element per unit area

a%/kD
—

a /kSD Q

some given frequency

circular frequency

Legendre function of first kind
Legendre function of second kind
time

thickness of surface sheet of sand-
wich element (Fig. 1)

parameter of extensional rigidity,
@ - v3/Eh

parameter of extensional rigidity of
sandwich element,

- va)/ZEstS

characterized elastic modulus of
viscoelastic medium

viscoelastic damping parameter
Poisson's ratio

angular velocity

] modifi‘ed frequency,

0® = @a® /g

SURFACE SHEET

TSR

Rl

(b)

Fig. 1. (a) Coordinate system of sphere; (b) Open

spherical shell; (c) Sandwich section

70

Closed Isotropic Homogeneous Spherical Shell

From the compatibility conditions and kinetic
equations where transverse, longitudinal, rotary in-
ertia terms and transverse shear deformation are
taken into consideration, the governing equation with
respect to transverse deflection w of a nonshallow
spherical shell due to classical bending theory can be
given in the differential equation of 6th order as
follows (see Ap. A),

{H H Hy -~ (L - VAdHH, + k(@ - V?)H,
+[= @+ d)HH, + kH, - 3(1 + vk} va®L

+ [(2d + 1)H, - k] o”a* LL - ¢°a°d LLL}(w)

=0 @)
where
® 3 1@ _
H, :ggg'Cthqu—"S-*sinzqﬁ-S—e—z Hy = Hy+2
_m 3
L= g ot

Homogeneous solutions of (1) can be given in the fol~
lowing form [6].

2 &y : FR
w = |c'P" (cos ¢) + D'Q" (cos p)fe’”" ces ne
=t = 1 ul 1 p,l (2)

where

1A .
b= mgrath 3 eV

and )\i = functions of angular velocity and other
shell parameters, given as roots of a cubic equation.
For modified frequency Q in rather large range
Q=1), X, takes real value (large positive, negative
small absolute value or negative of large absolute
value). Therefore, mode shape of deflection (2) for
fixed n and frequency parameter (0 is constituted
by three fundamental mode shapes, one with ampli-
tude decreasing rapidly from the boundary, another
with a long wavelength in the ¢ direction and the
last one with a short wavelength in the ¢ direction.
The latter determines the mode shape of the overall
shell vibration as shown in reference [6]. As

=A = p. @, *+1), it can be considered that ;i may
tallte positive integer for negative A of large abso-
lute value, Thatis, when X is negative and || is
very large the fractional order y can be replaced by
nearest integer with the sufficient accuracy. It can
be assumed that in a spherical shell, the influence of
boundary conditions on the deflection is negligible in
the vibration of high frequency from references [7]
and [8]. Then neglecting the boundary conditions and




using the Legendre's bipolynomial, we can set the
deflection of Eq. (1) as follows,

o = Psn(cos ¢) | sinnd
w o= z z D oot @)
m n
n=0 m=n Q_ (cos ¢) cos nbd
m
(mzn)

Assumption of expression (3) for the deflection seems

to be quite satisfactory, because (3) is a series of
orthogonal functions and any arbitrary function can
be expanded in the series of (3).

Functions P?n(cos ®), Qn (cos ¥) are trigo-
nometric expansions summed through cos m¢ or
sin mg.
mode shape in ¢ direction. By substitution of (3)
into (1), the following equation can be deduced.

X+ AX24+ BX+C = 0 @)
where
X = m(m +1)
A,B,C = functions of modified frequency Q and

other shell parameters, given later.

Equation (4) may be regarded as a relation between
only m and (i, but there is the limitation m = n,
The number of frequencies N(p) smaller than a
given frequency p = p, corresponds to the number
of lattice points of (m,n) in the domain S in

Fig. 2(a) and may be determined approximately from
the area § for large pg,

many references.

as has been indicated in

Generally it may be said that the difficulty in
the calculation of modal densities exists in obtaining
the area S, which is given in a double integral with
curved boundaries. Here the expression (3) of de-
flection simplifies the calculation of this area, as is
indicated in Fig. 2(a).

(a) (b)

Fig. 2. (a) Wave number bounded by a given fre~
guency for spherical shell; (b) Constant
frequency curves given by Equation (4)

Note that the number of frequencies that cor-
respond to the complimental area S'in Fig. 2(a) has
to be taken into consideration by the exchange of -

Suffix m indicates the mth order harmonic

!

coordinates ¢ and ¢ in Eq. (3) (i.e., rotation of
coordinate axes ¢ and €). Therefore, in the cal-
culation of modal density, the area S'+ 3 = 28
should be used;

N(p) =28 = m? =-;-(2X+1— 4X+1) X=z0 (5)

and with the definition of modal density

35S
QI = 4
2ap s

3S
dw

[ om [ -1 3x

EIRACR Sl oA

21 aag<4X+1+laQ
A fem(_1

2m\ Joa g<4X+1 1

X2 RA/30) + XEB/0) + 3C/0
3%% +2AX + B

M(p) »

#

#

©)

The relation of coefficients shows that Eq. (4) pro-
vides two positive and one negative roots for rather
large values of Q (for instance, (= 1.0); then the
relation between a given frequency p, and (m,n)
can be shown ideally in Fig. 2(b). Note that we use
the larger area for the calculation of the modal den-
sity. That is, the largest root of Eg. {4) for a given
frequency should be used in Eq. (6), which must be
rewritten as:

m{ 1
Mo(p)zzﬂ\,éaz I—;}<4XO+1— 1>

[ RA/XNXE + BB/30)X, +3C/3Q
3XZ +2AX, + B

‘3 (6a)

| -

=

where X, equals the maximum root (positive) of (4)
for Q. :

A= —4+(1~-vd~ 2 +d0°
B =4~-4(1-)d+ (1~ v¥k=-ka? +2@2 + 0P

+ (1 + 2d)F  (7)
C = 4@1-v?)d =21 - vk~ (1 +3vkP

+ [k = 2@d + )¢ - acP J

If the influence of transverse shear deformation is
negligible, we canset d = 0 in Eq. (7). If we wish
to neglect the terms due to rotary inertia, the gov-
erning equation presented in reference [6] must be
used. Equations (4) and (62) remain valid, however,
and the coefficients are given as follows:

A= -4-02
B = 4+ (1-v)k-k? + 20 (8)
C = -2(1 - v¥)k =~ (L + 3WkO? + KF
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i

If the only transverse inertia term is taken intc con-
sideration, the coefficients become

A = -4 /
B = 4-kPF+(Q-vAk 9)
C = -2(1 - vk + 2k0?

Open Shell (Nonshallow Domain)

Spherical shells are often used in an open form
as shown in Fig. 1(b), and Eq. (6a) is not applicable
for an open sphere. An approximate calculation of
modal density, as follows, is proposed.

'As we are concerned with the response in the
high frequency band, the mode index number m in
(3) takes on very large values. If we consider the
nature of high~order Legendre bipolynomials with re-
spect to cos ¢, the following expression may be ap-
plicable for the deflection with sufficient accuracy,

PI:n,(cos #) | cos nd

W =Z z an,ert (0)
n=0 m'=n Q;,(cos ¢) | sin nd
.where
m' = integer and equal to {(T/¢y)m
m = mode index number for an open sphere
(not necessarily an integer)
$¢, = open angle [i.e., Fig. 1)

Here the possible set of (m', n) must be taken in the
range 0 <m', nsm, in spite of the restriction of
m'zn in Eq. (10), because in (10) the mode shapes
are given by exchange of coordinate axes exclusive,
similar to (3). Substituting (10) into (1), we can cal-
culate modal density by the procedure described
earlier:
8o\2

Mo @) ~(%) Mo ) ay
where My(p) is given in (6a). The governing range
of (11) for ¢, will be shown below.

Shallow Shell

Previous papers presented the modal density of
a spherical cap, though in the Cartesian coordinates.
The author will show only the relation between the
shallow shell and the aforementioned shell in circular
coordinates. :

With the approximation of sin ¢ - ¢,
cot ¢ »1/¢, the governing Eq. (1) can be presented as

PRI e RS S AR
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{LLI, - @ - V)AL + k@ - v?) I

+[= @+ dLI, + Kk, - 31 + VK] «a®L  (12)

+[(2d + 1)L - k] 0®8*LL - o®a®dLLL}w = 0

where
22 13y 1 »*

I, = =S +>= +-—Z="= =

© a¢g+¢a¢+¢2592 IE IO+2
or

T +2) (k) Iy +ha)w = 0 (122
Then we can set the deflection as

o 3 .
B jwt cos nb
w ’_zz ey (ﬂ ¢) {Sin ns (13)

n=01i=1
In Bessel's differential equation with extremely large
index n, eigenvalueﬁ can be given approximately
in the following form [1].

m>3n®

K =
Therefore, substitution of (13) into (12) yields the
relation between p, and m, which is similar to (4),.
and modal density is given as

3X_
3w

where X = m®r® and the cubic equation with re~
spect to X becomes the same as (4).

Ms (p) =~ 271(%2) (14)

The open shell modal density proposed in (11)may
be rewritten for rather large m as
¢ 2
0) 3X
Mg, (p) ~ 2ﬂ('ﬂ— o

In comparison with this and (14), expression (11) is
valid in such a domain of open angle ¢, as

)

1s¢°sn

Sandwich Shell

Thin sandwich panels with a small cell shape
usually are used in the formation of complex shapes
such as nonshallow spheres. Then the assumption re-
mains valid that h/a is sufficiently small in com-
parison with unity, and the thickness of surface
sheets of sandwich panel becomes so much smaller
than the other size parameter that the bending stiff-
ness of these face sheets is negligible. Moreover,
it may be presumed that the sandwich shell has the
same nature in any circumferential direction, that
is, isotropic in ¢ and 8 directions.




The governing equation in this case is (see
Ap. B): :

!HQHQHO - (1 - v))d_HH, + (1 - vk H,
+ [—(é+d )HH +k H, - 3(1L + Wk | a®?L
3 s/ o TghE s]'s

s L.l _ srr 1 as ]
+ [5(1 2d )H; kS]aga LL-3 a:a d LLL

w=0 (16)
where
I T 42° 1
% T3E ¢t ks =32 d =D
s8 | 5 Q

Setting the deflection as in (3) and substituting into

(16), we can obtain the coefficients as follows:
4
= -4 <] - 2
A= -4+ (- ) <3+ds)a
B=4+k 1~V)=-kO®-4(1-v3)d
s s s
4 2,1
+2(3+ds>n +3 - 2d )
C = 201 - vk +4(1-v3)d_ +2k P - 3@ + vk O?
s s s s
2 1
-=(1- ~=d (P
+ [ks -1 zas)]n‘* 34 an
Eqs. (4) and (6a) are valid in this case, and then
Egs. (11) and (14) are still valid for a nonshallow

. open shell and a shallow shell, respectively.

Soherical Shiell in a Viscoelastic Medium

When a shell lies in a viscoelastic medium, the
differential operator with respect to time t takes
the following form:

_mE 2
L = g at3+6at+Y (18)

The square of the modified frequency can be given as
(see Ap. C):

= B+ aZ[—*&—Y] 19)
O law/y

02 = ga®(m/g)ws nondamping

F = oa®m/gw® value of this case

"Modal density can be calculated by substitution of
(19) into (4) and (6a) and differentiation with respect
to w.

38 8S_ 2wy
=i 4y —
3w i 3w, Ow

il

M (p) ~ 4m

- V02 - 0a?[62/4(m/)] - ¥
Mo ) % 0)
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for
2. 2| b .
o [4<rn/g> Y}ZO
and
Mv(p) =0 21)
for

Y]zo

If modal density (6a) has any singular point, it
must be in such a case that roots of Eq. (4) satisfy

C02 - a';a.z -——_6_2—- -
=0 7 [ 4(m/g)

Numerical Calculation

3X2 +2AX + B = 0

simultaneously. This takes place for the equal roots
of Eq. (4), which are negative for a value of
0.8<Q<1,0 from the relation of coefficients and
roots of (4), or more clearly in numerical calculation
[6]. The remaining root is positive and as in the cal-
culation of modal density, maximum root of Eq. (4)
is required for any Q. Thus, there is no singular
point in (6a).

Eigenvalues Q that correspond to low frequency
modes are assumed to be in the domain 0.8 <0 < 1.0
{61, [7], and response in such a low frequency range
is calculated more accurately by the classical modal
analysis methoed than by the modal density methed.

Thereforc, numerical results will be shown for 0 > 1.

The variations in modal density of an isotropic ho-
mogeneous shell (6a) with modified frequency Q are
shown in Figs. 3(a) and (b) for a/h = 50 and 100, re-
spectively. In the calculation the following values
are used:

- 5 __E 12
D"6Gh G"2(1+‘\)) d"s(l-v)

and four curves are considered.

-

(transverse + longitudinal + rotary)
inertia terms + transverse shear deformation

ii. (fransverse + longitudinal + rotary)
inertia terms
iii. (transverse + longitudinal) inertia terms

iv. transverse inertia terms
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Fig. 3. Modal density of an isotropic homogeneous
closed spherical shell

- From Fig. 3, we note:

1. When rotary inertia and transverse shear
deformation are included in the kinematic
equation, modal density increases with fre-
quency (see curves i and ii), This indi-
cates that these terms may not be negli-
gible in the analysis of response in the high
frequency band.

2. The difference between curve (i) and the
others indicates the considerable influ-
ence of transverse shear deformation on
modal density. Variation of a/h appears
to influence slightly the ratio of increase
of curve i with frequency.

3. There is no difference between curves iii
and iv; that is, modal density is scarcely
affected by longitudinal inertia terms in
spite of rather high frequency range. Note
that modal density as considered here re-
lates to transverse deflection., Curve iii
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and iv become flat rapidly and keep constant
value.

4. In modal density radius-thickness ratio a/h
" seems to be the most important parameter as
may be seen by the change in level in the

curves from Figs. 3(a) and (b).

Modal density of isotropic sandwich shells are
given in Fig. 4(a) and (b) for a/h = 50 and 100,
respectively, with variations in shear deformation
rigidity. With the assumption that

D. = 5/6[(Esh)/2(1 +v)], numerical computation is
cehsidered fos three dases (v = 0.3):
2t
s _ . 12
L35 = 1.0-d, = 550
2t
s _ __ 1.2
2.5 = 0.1=d = gE
2t
3, —= = _0_-.§_Q_T_.\i).4d = 0.1
h 12 s

Terms of transverse, longitudinal, and rotary in-
ertia and transverse shear deformation are taken into
consideration in these three cases.

200
180}

160

L \g’ 140l

E
N j20f
100} 0.34286 (2)
0.16060 3
sol-
| 1 | 1 j
4] 5 10 15 20
Q
a
a) — = 50
@ 1
300(
280}
260}
gjo
~
ol 3 2a0-
d=34286
S
N 2201
200} 0.34286 - (2)
0.10000 (3)
1oL
L | 1 ! i
[ 5 15} 5 20
: o
a
- = 100
®) T

Fig. 4. Modal density of an Isotropic sandwich
closed shperical shell




1. Curve (1) represents the model density for
extremely large t_, and in curves (2) and
(3) shear deformation rigidity of sandwich
core becomes relatively large. Results
show the considerable effect of transverse
shear deformation in modal density.

2. When the ratio t /h decreases, its influ~
s . .
ence on the curves becomes rapidly slight,
and for a rather small ratio, modal density
decreases with increased frequency. We
are also able to determine the ratio t /h
to make modal density constant.

3. The decrease and increase ratio of curves
with frequency becomes small with in-
crease of a/h in all cases, and this point
is a little different from the homogeneous
shell.

4. In modal density, the ratio a/h seems to
be the most important parameter,
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APPENDIX A
On the basis of classical bending theory, kinet-
ic equations of spherical shell elements are deduced
from reference [9] as follows:
. (o] 1 _ .
(sin ¢ Ne¢) + N9 + cos ¢ N% sin ¢ Qe
- asin¢L(v+ak289) =0 (Ala)
sing N ° + N« cos¢ N_~ sin
(ing NP + N - cos ¢ Ny - sing Q
- asing Lu+ akeﬁ(b) =0 (Alb)
. 0 ' . )
(sin ¢ Q¢) +Qy +sing (Ne + N¢)
~asing L(w) = 0 (Alc)

(sin¢M¢)° +Mé¢—-cos¢ Me+asin¢.Q¢

o

a2 2 _
-T2 31n¢L(a u+kyﬁ¢) = (Ald)
. O T n 3
(sin ¢ Meq)) + Me+ cos ¢ M% +asing Qe

a® 2 3
% asm¢L(av+kyae)~ G (Ale)

5

where

as¢ = W +u—§—Q¢

= 2 ' L
By SV V5%

k ,___];Bo " :i(l

o ay o 2 g -B cotg

sin ¢ g @ )

._.1 ] 1 !
keqs a(Be *sin ¢B¢ cot 9 Be)
2 9 1222
ko= K510 kT
- E - _ m3°
° T3 Y L= g dtF

and see reference [6].

Approximating as k.~ k, ~ 1, we can deduce
one differential equation from (Ala) through (Alc) as
follows:

HHy (W) - ca® LH (w) + 2(1 + v)k(l +71{ + qL)w

+ akaz(l +-}1; + qL)L(w) - (l + \)>1;<1 +i + qL)X

k
2
2 a7 L _Eb
- 20a L(><)—-I—)HlL(w)+I—jl_le(X)
2 Eh
_—ﬁ—l—v-Hl(w) =0 (A2)
where
"Hy = Hy+(@~-v)
a2
=5
- sin ¢ u)® +
X sin¢( ¢ sin ¢

Compatibility condition can be given in the following
equation from strain-displacement relations and con-
stitutive equations:
Ha() = @+ V) Hy (w) = 0a® L(w) = ¢a®Liy)

= 2@ + V) qL{y) - ¢a®ky Ly + 202 gLL(W)

+ 4@ + v)qL(w) - 0a®k, LHy(w) = 0 (A3)

T T

i
i
i
I
1
i
|
i




Eliminating x from (A2) and (A3), we can get finally,
HH, Hy - (1~ v2)dH, Hy + [(1 + (L = V)
1 2 4 wn?
+k(1 +k+qL>(1- v° +oa L)]H2

- (2 + ky + d)oa®H Hy L

d]d

k
+@+V)@4+k,-d<3 +k2— vk> +2qL <1

~l[<1 - V> - 8<1 + v

e

- &)|ea’Ln,

- [(1 + \)>(<1 +v>d + k<1 +%{‘ + qL>)
(8 +k,+4 <1 +v>dky)

+ kaa2(1 +-11; + qL><1 +k,+ <1+ v>dk2> L]
@a?L+ [1 +d+ 2d + v<l + d>)kJe®a* H LL

~[4+ A +Nd+T7Q +v)dk, + 2vk,

= (1 - v3)d%k, + 4qL]oPa* LL} (w) =0
where usually a/h>>1 and then k >> 1. Neglecting
1/k in comparison with unity and using D = 5/6 Gh

and G (E) /2(1 +v), we can get the governing
equation with respect to deflection w of an isptropic
homogeneous shell.

HoHHo~ (1~ V3)dHH, + (1 - v¥)kH,

+[- (2 + )HH, + kH, - 3(1 + V)klea®L

+ [(2d + 1)H, - k]o®a* LL - ¢°a®dLLL
2

w =0 (Ad)

where
12
51 - V)

= 0(1) <k

d =

If we intend to neglect transverse shear deformation
only, we can set D equal to infinity, thatis, d = 0
in (A4).

For the calculation of displacement compo-
nents u and v, solutions of another differential
equation that is independent from Eq. (A4) must be
added to those of (A4), and for this equation w he-
comes equal to zero [6].

APPENDIX B

For sandwich shell, if we set

Estsh2 1= °
D =ga-w Fb=2EL o = 2B t_
1 1-v° _ 4a®
ds = B 2E ¢ , ke = 2
Q ss

and rewrite inertia terms in (Ald) and (Ale) as

3k a sin ¢L(—u + st¢>

2

—3k asmqsL( v+kB>

kinetic equations and compatibility equation of Ap. A
are valid. Finally we can deduce the governing equa-
tion as,

H HH, - (L= v?)d_HH, + {(1 + V) - V)

+k 1+—1~+E-S-L)l 2+d a®LyH
s( k 3 ¢ v s 2

4 2
<3+k +d

{[(1 - ) - 8@ + \))2
f

lz+

1
+2qs (3 - dS)L}

>asa2H2HDL

d
]d + 1+

S

[\

k
s

- 2
d83+<1-v>"-‘

ks/

51

o[saz Hz L

'+ 1+ d+k1+—1~+3§
(1 + )@+ vd + ko i3

s k
s

)

-

2
3+k
s

+4@1 + vd

+kaa2[1+'—
s s

k
s

1
39N
i

1+f—-+<1+\)>d
s

+ aga*% - ds}{l
-

w o=

200, .2
sk o2 L

2
A

1
k. +2[1 + vjd_=ILLH,

1+"g-' +<l+\)>—}'{-s-d

]a a"d

Here we assume thatl transverse shear rigidity D

takes such values as Q
5 . 5 Esh .
Q 6 2(1+v)
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then dS becomes

g =12 Eis_
s 5@~-vw\h

.24
5(1 - v)

= 0Q)

i
If ks = 4a%/h? is extremely large in comparison
with tnity, we can obtain the governing equation ap-
proximately but with sufficient accuracy:

tHZHEHO- a- \>‘°’)dlSH2H2 + (- \)E)ksHa
4
L

+ [-]:(1 - 2d )H, - ks] a/za"‘ LL

+d )1, +IGH, - 30 +\))kJ o 2%

3

1ae -
-3 dSLLL}w =0 (B1)

APPENDIX C

For the problem of free vibration in a visco-
elastic medium, the differential operator L() with
respect to time t in kinetic equation (Ala) through
(Ale) becomes

_m 2 3
L gat2+6at v (Ch)

We may treat more simple kinetic equations
where only transverse and longitudinal inertia are
included instead of (Ala) through (Ale) without loss
of generality. In the governing equation of this state,
we can set

jwt e
we value

w o= w = complex

and obtain the following equation.

H,HH, - PHH, + [l - 7)< k7] 1,

+ 31 + VKOE~ k(1 - W(Ew, = 0 (C2)

where

£ (L AR -
Ehl v g” jbw Y)

= AZ - 7%) + BT - C+juw,TA - Bug)
- 0+ 303

(L - v3)ma?
Ehg

@ ~ v3)a® N
Eh

a- v2!a2 .
Eh Al

(C3)

w = w, tiT
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Substitution of (C3) into (C2) yields:

[H2H2H° + PH H, + k(L - V2 - B)H,

+ 3@ + VKGE - k(1 - V) (5 - @] w o= 0 (C4)
[QZZHQHO - KO2H, + 3(L + Wka2
| - 2k(l - \F)afog] wo=0 (C5)
Then
i. If 02 = 0,  Eq. (C5) is satisfied identically.

ii. I Q2 # 0, deflection w must satisly (C4)
and (C5) simultaneously.

This state takes place only when Q, and Q, take
some constant value identically without consideration
of boundary conditions. We can conclude that the
state QF # 0 is not generally valid.

As an eigenvalue problem, we set Q, = 0 and
T = B/2A, Then

o =3fr-%09 &
anq (, = eigenvalue of nondamping problem
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DISCUSSION
Mr. Pearson (NASA Ames Research Ctr.): Mr. Kunieda: Only curve one has such a
What is the significance of the minimum point low point. The reason is that only above that
of the curves at a frequency parameter of frequency does the transverse shear term be-
approximately three? come significant.
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